Phenothiazine Derivative-Accelerated Microbial Extracellular Electron Transfer in Bioelectrochemical System

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenothiazine Derivative-Accelerated Microbial Extracellular Electron Transfer in Bioelectrochemical System

In bioelectrochemical system (BES) the extracellular electron transfer (EET) from bacteria to anode electrode is recognized as a crucial step that governs the anodic reaction efficiency. Here, we report a novel approach to substantially enhance the microbial EET by immobilization of a small active phenothiazine derivative, methylene blue, on electrode surface. A comparison of the currents gener...

متن کامل

Biotechnological Aspects of Microbial Extracellular Electron Transfer

Extracellular electron transfer (EET) is a type of microbial respiration that enables electron transfer between microbial cells and extracellular solid materials, including naturally-occurring metal compounds and artificial electrodes. Microorganisms harboring EET abilities have received considerable attention for their various biotechnological applications, in addition to their contribution to...

متن کامل

Nanoparticle facilitated extracellular electron transfer in microbial fuel cells.

Microbial fuel cells (MFCs) have been the focus of substantial research interest due to their potential for long-term, renewable electrical power generation via the metabolism of a broad spectrum of organic substrates, although the low power densities have limited their applications to date. Here, we demonstrate the potential to improve the power extraction by exploiting biogenic inorganic nano...

متن کامل

A role for microbial palladium nanoparticles in extracellular electron transfer.

Insights into extracellular electron transfer of microorganisms are important for the understanding of electron transport processes in bioelectrochemical systems (e.g. biological fuel cells and microbial electrolysis cells), as well as for biogeochemical cycles, biocorrosion and bioremediation. Two principal mechanisms for extracellular electron transfer have been proposed: i) electroactive met...

متن کامل

Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems

BACKGROUND Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe3O4) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scientific Reports

سال: 2013

ISSN: 2045-2322

DOI: 10.1038/srep01616